Oxford Cambridge and RSA

OCR 03 Indices and surds (Foundation)

1. Work out 4^{3}.
2. Write $\frac{1}{5}$ using indices.
3. Simplify $\sqrt{36}$.
4. Calculate $7^{3} \times 7^{-2}$.
5. Write the number 245 in standard form.
6. Simplify $\frac{10^{-4}}{10^{3}}$.
7. Simplify $\left(2.2 \times 10^{5}\right) \times\left(3 \times 10^{-2}\right)$.
8. The circumference C of a circle with radius r is given by the formula $C=2 \pi r$.

Calculate the circumference of a circle with radius 4 cm , giving your answer in terms of π.
9. Calculate $\frac{1}{2} \times \frac{2}{5} \times 3$. Give your answer in the form $\frac{a}{b}$.
10. Work out $\frac{3^{-5}}{3^{-4}} \times \frac{2^{2}}{2^{-1}}$.
11. Sam writes $3^{2} \times 3^{4}=3^{6}$. Is Sam correct? Explain your answer.
12. Show that $(\sqrt{64})^{-2}=\frac{1}{64}$.
13. Which of the following numbers is the smallest? Show how you decide.

$$
\begin{array}{llll}
1^{-5} & 15^{0} & 0.5 & (0.5)^{-1}
\end{array}
$$

14. Venus is $1.1 \times 10^{8} \mathrm{~km}$ from the Sun. Mars is $2.3 \times 10^{8} \mathrm{~km}$ from the Sun.

Zoe says " 2.3×10^{8} take away 1.1×10^{8} is 1.2×10^{0}, so Mars is 1.2 km further away from the Sun than Venus is". Explain why Zoe's calculation is wrong.
15. Show that $\left(2^{3}\right)^{4}=\left(2^{4}\right)^{3}$.
16. A tank in the shape of a cube holds $125 \mathrm{~m}^{3}$ of water when full. What are the dimensions of the tank?
17. 32 g of sulphur contains approximately 4×10^{23} atoms.

What is the mass of one atom of sulphur?
18. Ebru's digital camera has 1×10^{9} bytes of storage. She takes photos that each need 2×10^{6} bytes of storage.
How many photos can she store on her camera? Give your answer in standard form.
19. A square has an area of $12.25 \mathrm{~m}^{2}$. Find the perimeter of the square.
20. Chen thinks of a number. He finds the cube root of the number and then squares this answer. He now has the number 81. What number did Chen first think of?

Answers

1. 64
2. 5^{-1}
3. $(\pm) 6$
4. 7
5. 2.45×10^{2}
6. $-4-3=-7$
10^{-7} or 0.0000001
7. $2.2 \times 3=6.6,10^{5} \times 10^{-2}=10^{3}$
6.6×10^{3} or 6600
8. $2 \times 4 \times \pi$
8π (cm)
9. $\frac{2}{10} \times 3=\frac{6}{10}$ or $\frac{3}{5}$
10. $\frac{3^{-5}}{3^{-4}} \times \frac{2^{2}}{2^{-1}}=3^{-1} \times 2^{3}$
$=\frac{8}{3}$
11. Yes with correct explanation. For example, $3^{2} \times 3^{4}=3 \times 3 \times 3 \times 3 \times 3 \times 3$, or "the rule is when you multiply you add the indices".
12. $(\sqrt{64})^{-2}=(8)^{-2}=\frac{1}{8^{2}}=\frac{1}{64}$
13. 0.5 because $1^{-5}=1,15^{0}=1$ and $(0.5)^{-1}=2$.
14. The answer should be 1.2×10^{8}. If correct answer not given, explanation should include the fact that she should not have subtracted the indices.
15. Both equal 2^{12} or

$$
(2 \times 2 \times 2)(2 \times 2 \times 2)(2 \times 2 \times 2)(2 \times 2 \times 2)=(2 \times 2 \times 2 \times 2)(2 \times 2 \times 2 \times 2)(2 \times 2 \times 2 \times 2)
$$

16. $\sqrt[3]{125}=5$ so tank is $5 \times 5 \times 5 \mathrm{~m}$.
17. $\frac{32}{4 \times 10^{23}}=8 \times 10^{-23} \mathrm{~g}$
18. $\frac{1 \times 10^{9}}{2 \times 10^{6}}=0.5 \times 10^{3}$
$=5 \times 10^{2}$
19. Side length $=\sqrt{12.25}=3.5 \mathrm{~m}$ so perimeter $=14 \mathrm{~m}$.
20. $\sqrt{81}=9$
$9^{3}=729$

We'd like to know your view on the resources we produce. By clicking on 'Like' or 'Dislike' you can help us to ensure that our resources work for you. When the email template pops up please add additional comments if you wish and then just click 'Send'. Thank you. Whether you already offer OCR qualifications, are new to OCR, or are considering switching from your current provider/awarding organisation, you can request more information by completing the Expression of Interest form which can be found here:
www.ocr.org.uk/expression-of-interest
Looking for a resource? There is now a quick and easy search tool to help find free resources for your qualification: www.ocr.org.uk/i-want-to/find-resources/

OCR Resources: the small print

OCR's resources are provided to support the delivery of OCR qualifications, but in no way constitute an endorsed teaching method that is required by the Board, and the decision to use them lies with the individual teacher. Whilst every effort is made to ensure the accuracy of the content, OCR cannot be held responsible for any errors or omissions within these resources. This formative assessment resource has been produced as part of our free GCSE teaching and learning support package. All the GCSE teaching and learning resources, including delivery guides, topic exploration packs, lesson elements and more are available on the qualification webpages. If you are looking for examination practice materials, you can find Sample Assessment Materials (SAMs) and Practice Papers on the qualification webpage: http://www.ocr.org.uk/qualifications/gcse-mathematics-i560-from2015/
© OCR 2017 - This resource may be freely copied and distributed, as long as the OCR logo and this message remain intact and OCR is acknowledged as the originator of this work.
OCR acknowledges the use of the following content: n / a
Please get in touch if you want to discuss the accessibility of resources we offer to support delivery of our qualifications: resources.feedback@ocr.org.uk

GCSE (9-1)

MATHEMATICS

Section Check In

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Use positive integer indices			
AO1	2	Use negative indices to represent reciprocals			
AO1	3	Calculate exact roots			
AO1	4	Calculate with integer powers			
AO1	5	Convert numbers to and from standard form			
AO1	6	Calculate with integer powers			
AO1	7	Know and apply laws of indices			
AO1	8	Use multiples of π in exact calculations			
AO1	9	Use fractions in exact calculations			
AO1	10	Calculate with integer powers			
AO2	11	Know and apply the laws of indices			
AO2	12	Calculate with integer powers and roots			
AO2	13	Interpret indices			
AO2	14	Subtract numbers in standard form			
AO2	15	Know and apply laws of indices			
AO3	16	Recognise simple powers			
AO3	17	Calculate with numbers in standard form			
AO3	18	Divide numbers in standard form			
AO3	19	Calculate with roots			
AO3	20	Calculate positive integer powers and exact roots			

Assessment Objective	Qu.	Topic	R	A	G
AO1	1	Use positive integer indices			
AO1	2	Use negative indices to represent reciprocals			
AO1	3	Calculate exact roots			
AO1	4	Calculate with integer powers			
AO1	5	Convert numbers to and from standard form			
AO1	6	Calculate with integer powers			
AO1	7	Know and apply laws of indices			
AO1	8	Use multiples of π in exact calculations			
AO1	9	Use fractions in exact calculations			
AO1	10	Calculate with integer powers			
AO2	11	Know and apply the laws of indices			
AO2	12	Calculate with integer powers and roots			
AO2	13	Interpret indices			
AO2	14	Subtract numbers in standard form			
AO2	15	Know and apply laws of indices			
AO3	16	Recognise simple powers			
AO3	17	Calculate with numbers in standard form			
AO3	18	Divide numbers in standard form			
AO3	19	Calculate with roots			
AO3	20	Calculate positive integer powers and exact roots			

